기타
머신러닝 하이퍼파라미터 튜닝(최적의 k값 찾기)
September Choe
2019. 7. 29. 20:02
728x90
이전 게시물(붓꽃 학습, KNeighborsClassifier)과 이어집니다.
근데 뭔 내용이었는지 까먹음.
from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics model = KNeighborsClassifier(n_neighbors=1) model.fit(X_train, y_train) pre=model.predict(X_test) metrics.accuracy_score(pre, y_test) |
import matplotlib.pyplot as plt # 가지고 있는 데이터를 시각화하여 전반적인 느낌을 한눈에 본다
pd.plotting.scatter_matrix(iris_df, figsize=(15,15), marker="*", c=iris.target, alpha=1)
train_score = []
test_score = []
for k in range(1, 50):
model = KNeighborsClassifiers(n_neighbors=k)
model.fit(X_train, y_train)
train_score.append(model.score(X_train, y_train))
test_score.append(model.score(X_test, y_test))
plt.plot(train_score,label="train")
plt.plot(test_score,label="test")
plt.legend()
plt.show()
728x90
반응형